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ABSTRACT

Arrival-time estimation by adaptive thresholdiag is described.
The probability density of airival time is derived for differentiable
Merkov processes. The special case of additive, stationary noise is
given particular attention. A direct derivation of the probability
density of arrival time for pulses with sharply rising edges is given for
arbitrary noise. The results are applied to the Gaussian and Rice
distributions. Comparison with the Czrames-Rao bound of estimation
theory indicates the asymptotic optimality of adaptive thresholding
for these two distributions. ’ o

Manuscript submitted June 6, 1973,

[d




ARRIVAL-TIME ESTIMATICN BY ADAPTIVE THRESHOLDING

INTRODUCTION

One metaod of Jetermining the arrival time of a signal is to measure the time at which
the signal crosses a certain threshold level. Figure 1 shows a puise with arrival time defined
to be the time at which the pulse exceeds level A. Suppose a series of pulses are received.
In a practical system the amplitude E will usually vary from pulse to pulse. If the rise
time does not change, the arrival time relative to the leading edge will vary from pulse to
pulse, even if 1o noise is present. To remedy the situation, adaptive thresholding can be
used. Adaptive thresholding is defined to be ar-ival-time estimation by thresholding in
which the level A is always a fixed fraction of E. Typicallv, A/F is set equal to 1/2,

5(1)
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1
i
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fe TIME

Fig. 1--Received pulse with a thresheld crossing

A practical adaptive-thresholding system is shown in Fig. 2. The received signal is
split into two branches, In the ‘ower branch the sigual is first delayed by an amount ex-
ceeding its rise time, which iz assumed to be known. Then the delayed signal passes
hrough an amplifier witt a gain of G. The latter is a negative quantity such that i3j-? .
equa! to the desired val-.e of A’E. The amplifier output is added to the original received
signal. The adder oriput crosses the zerc level at a time equal to the time at which the
level A is erossed pius the constant delay. In the important sr.cial case of a half-ampli-
tude arrival time, A/F = 1/2 and G = ~2. A detailed analy.i5 of this adaptive thrasholder
and an alternative one can be found in the literature (1). -

Arrival-time estimation by adaptive thresholding is not the optimum estimation pro-
cedure (2-6). However, it will be shown that edaptive thresholding providss an asymp-
totically efficient estimate at least in sorae impariant cases, Furthermore, the simplicity
of implementiag acaptive thresholding systems gives the method practical importance.
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fig. 2—Adaptive threshoider

An approximate treatment of adaptive thresholding in the presence of Gaussian noise
has previoucly been done (1). In this report the general case of differentiable Markov
processes is studied.

GENERAL FORMULATION

Figuce 3 shows an exaggerated example of a multiple threshold crossing, which may
aceur when noise corrupts the received signal. The combined signal and noise is denoted
by r(t). When multiple crossings occur .lose together, there is some ambiguity as to which
crossing represents the actuai puise position, i.e., which crossing is closest to that crozsing
v.hich exists in the absence of noise. A somewhat rabitrary but simple strategy is for the
adapive thresholder to deiect only the first level crossing for each pulse it receives. Thus
we scek to derive the probability density of the first threshold crossing time of a received
sienal,

With sespect a received pulse, we assume that the adaptive-thresholding system is
capatic of rejeciing any level crossing which cccurs too prematurely, that is, before a cer-
tain starting time. Under this assumption, we may, without loss of generality, focus atten-
tion on a single received pulse. We seek to Jetermine the time of the first threshold cruss-
ing to cccur after a starting time defined to be o= 0. A practical system to accomplish
this rejection is shown in Fig. 4. The combined signal and noise, r(t), is applied to a fixed
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Fig. 2—~Exaggerated example of 8 muitiple thre hold crossing
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Fig. 4—Sysiem for the elimination of false alarms

thresholder, the level of which is set to a fixed fraction of the minimum expected amplitude
of the received pulses. The output of the fixed thresnolder initiates a counter. This counter
continues to count as long as the fixed threshold level is exceeded by r(¢). If the count
reaches a certain value, the gate i enabled, and r(t) is allowed to pass to the adaptive
thresholder, A reasonable critical value of the count is one-half of the minimum signal
duration. f the minimum signal duration is large enough such that there is negligible
probability of a noise pulse exceeding this duration, the system of Fig. 4 will reject spurious
pulses occurring outside the immediate vicinity of the signal edge. A reset pulse prepares
the counter for the next received signal. In keeping with our strategy to detect the first
level crossing, the delay in the upper branch should exceed somewhat the critical value of
the count.,

With ¢, a random variable equal to the first threshold crossing time of a received pulse,
fo(t) is doﬁned to be its prohatiility density function. To derive an expression for the
probability density, we relate it to another function more readily obtained. Refernng to
Fig. B, let f(t)e represent the grobability that a first threshold ceossing of r(t) accurs in
_ the interval between ¢ and ¢ + ¢, assumiiig no crossing hus occurred before tine ¢, From
the above dafinitions, it foows (7) that

14ty

By = . ' oy
J’;‘ fp(x) dx
) Since f,(¢) is a probabxhty density function and we have assumed fc(t) =0 fot <0,
S it is required that ]
f fo{x)dx =1, )
- 0 < N )
c Using Eds. (2) & a boandry condition; Eqs. (1) may be inverted to yield

B Tt
£,(8) = B(t) exp| - f Bx) dx|. 3)
0
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Fig. 5—Small tirue interval of a received pulse

Once an expression for §(¢) is derived, Eqs. (3) will provide all the information needed for
our evaluation of the performarice of adaptive thresholding.

If the time interval between ¢ and ¢ + € is chosen small enough and r(t) is assumed
to be differentiable, we can writc

r(t+e) = r(t) + r'(t)e, (4)

where r'(t) is the time derivative of r(t). This equation implies that we may ignore the
possibility of more than one threshold crossirg in the small time interval. We now assume
that r(t) is 2 Markov process. In the definition . f B8(t)e, it follows from the Markov prop-
erty that the condition that no crossing occurred betor. *me t is equivalent to the condi-
tion that r(t) is less than the threshold at time ¢. Thus if P[ ] signifies the probability
of the event in the brackets,

B(tye = Plr(t +€) > Alr(t) < A}

= Plr(t) + (e > 4 > r(t)]
P[r(t) < 4]

, {5)

where Eq. (4) has been used in the last step. We define f,,./(x, y) to be the joint probebii-
ity density of r(t) and 7'(¢). The probability density of r(t) is represented by f,(x). In gen-
eral the densities will be tunctions of time. In terms of the density functions, Eqgs. (5)

can be rewritten as

o ~A
[ [ ey
0 ‘YA-ye

) ) B(t)e = LA (6)
- J folee) dx

-00
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where the region of integration in the numn: :rator can be determined by inspection of the
rr plane. The time dependence of the density functions is implicit. In the limit of small
€, the inner integral of Eq. (6) can be evaluated. Taking the limit of Eq. (6), we obtain

fwyfrr'(A, y)dy

0
f:A fr(x) dx

The substitution of Eq. (7) into Eq. (3) gives a complete solution to our problem, Ho\‘r-,
ever, the result will seldom be a simple closed-form expression, suice the density functions
of Eq. (7) are time dependent, making the evaluation of the integral in Eq. (3) difficult

in most cases.

B(t) =

(7

We could have attempted to derive f,(t) from the Fokker-Planck equation for con-
tinuous Markov processes and first passage time theory. However, the present approach is
easier and yields greater physical insight.

STATIONARY NOISE

In most applications the noise can be considered stationary over the observation inter-
val In this case the general results can be simplified somewhat. Consider the received
pulse shown in Fig. 6. Time is divided into four periods. Region I is defined by 0 < ¢
< ty, the time before the occurrence of the leading edge. Region II is defined as the inter-
val of the leading edge, {; <t <t;. Region III is the interval between the leading and
trailing edges, t; < ¢ <ty. Region IV is the remaining time period. These definitions are
not precise but are often useful when the pulse has a reasonably fast rise.

In Region 1, r(t) has no signal component, by definition. Since the noise is station-
ary, neither f,./(4, ») nor f.(x) has a time dependence. Thus

B(t)y = Cy, 0<t<ty, (8)
and

[o(t) = Coe €0 0<t <y, (9)
where Cy is a constant. Using Eq. (8) in Eq. (3), it follows that for Region II

~1
7.ty = eC0'B(t) exp [- j B(t) dt:l, to <t<ty. (10)
o

In Region III the signal component of r(t) is approximately constant, by definition, Once
again the stationarity of the noise leaves no time dependence in 8(¢). It is then easy to
see that f.(t) has the form given by

f(t) = Cye”C2, t; <t<ty, (11)




Tt~ £ RIS LY

%%mW@ﬁ%WW%%@W§WMW

5508 [ S A AR i QTR Rt BT

Wﬁ%ﬁ&%ﬁf%@ ﬁ»@» s RN P “.;i

o T T Hen g SRR LT = N R

6 DON J. TORRIERI
t ]
i t
| i
I I ' psni } jL'4
| |
t §

r(t)

N

-
= -—— o w —— v

S :
.

TIME
Fig. 6—Time regions of a pulse

where C; and C, are constants. In most applications the value of f.(t) is negligibly small
in Region IV,

The general features of the variation of f,.(t) are seen in the previous expressions. We
will now consider some important special cases.

STATIONARY, ADBITIVE NOISE

If the noise is additive, we can write r(t) = s(t) + n(t), where s({) is the signal and
n{t) is the noise. In the presence of additive noise, Eq. (7) becomes

0

[ s Ol s, ) dy
_ Y-8 (t)
B(t) = = , (12)
[ fwas

where s'(t) is the time derivative of s(¢), f,,'(%, ¥) is we ) it probaidity density of the
noise and its derivative, and f,(x) is the probablhty density >f the noise, Note thet, in
contrast to Eq. (7), the time dependence is exhibited. exphcm ' in Eq. (1:3). Because the@
noise is stationary, there is no implicit time variation in f,,,'(x, ¥) or /,,(x).

Equation (12) can easily be evaluated in two special cases. In the first one, it is as-
sumed that P[n'(t) < - s'(t)] is negligible for all s(t) and n(t) in Region li. Formally, we
can write

) fnn'(x1 y) = 0, y <-S'(t),' to S tl" (13)
It is further assumed that n' is symmétrically‘distributed about the origin, that is,

Fan'l, ¥) = Funilet, <), (14)




NRL REPORT 7619 - ) 7
Under these two assumptions, Eq. (12) is:approximately given by

S (a0 - 3(2)

3(¢8) = 15
B(e) yrwy (15)
[" faw ax
Looking at the right side of Eq. (15), we notiée that we can write
d {.A-s{t) i
Bit) =~ T In j—-m Fnix) de . (16)

Using the Eq. (16), f(¢) can be readily integrated. Perférming the integration, noting that
s(tg) = O by definition, and substituting into Eq. (10) yields

~Coto =1 .
S (Y, (A ~s(t}) __.I.;.._...._.___ , to St<ty, 1n

U;o falx)dx

where the facior in brackets is a constant. Equations (9), (11), and (17) constitute a
close-form solution for the probability density in this special case.

F.)

For the second spscial case, we ssstime s'(#) is 7a constant M (not necesearily large)
in Region II. We furtner assume that n(t) and n'(¢) are statistically independent. The
latter assumption can bestated formally as

Trn'tE ¥) = flx) () (18)
Under these two assumptions, if M # 0, Eq. {12) reduces to

T MFfa(A - s(t)) ’ 1)

N V A-s(t)
[ ey s

Eals ]

where K is a constant defined by
<O

K = Jf (1 + %,})’fn'(y) dv, M#£0. (20)
M ’

Clearly, Eq. (19) can be put ir the form of Eq. (16), It then follows from ©Tq. (10) that

A-s(t) K1]  gpe-Coto
fe(t) = fn(A -s(t)) [f fn(x)dx} M to St<ty,

o A k|’
| (f fn(x)dx>
— 1)
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where the last factor in brackets is a constant. Equc.tions (9). (11}, and (21) constitute a
closed-form solution for the probability density in this specia case.

It is noticed that in the limit of large M, Eq. (20) indicates that K = 1, Then it is
seen that Eq. (21) reduces to Eq. (17).

It can easily be shown (1) that additive Gaussian now. fulfills the conditions specified
by Eq. (14) and (18). Thur if Eq. (13) is satisfied, we cun use Eq. (17) for the Gaussian-
noise problem. Alternatively, if M is constant, we can use Eq. (21) for the Gaussian-noise
probiem. A stationary Gaussian Markov process must have a power spectrum of the
form (7)

S(w) = w? + b2

where a and b are constants. A flat noise spectrum mayv be closely approximated over any
finite {requenzy range by a suitable choice of values for Jhe two constants. Of course,
stationary white Gaussian noise, which is flat over the infinite frequency range, is neither
differentiable nor Markov.

In many practical situations the received pulse hes a very short rise time. Rather
than use the formulas already established, we seek a direct derivation of the formulas for
this special condition

DIRECT DERIVATION FOR LARGE-SLOPE LEADING EDGES

If the ieading edge of the received pulse has a large slope, it is intuitively reasonable
to expect that there is only a small probability of more than one threshold orossing in
Region II of Fig. 6. Formally, if f,/(y) is the probability density of the slope of r{¢}j, we
sssume that

fry) = 9, y<0, ty<t<t. (22)

In other words, the signal slope is sufficiently great 1. the combined signal and noise to
nave negligible probability of nonpositive slope. To simplify matters further, we set t; =
0, that is, we eliminate Region 1.

Let F (x, t) be the probability that r(t) <x. Thue F,(x, ¢) is a time-varying probabil-
ity distribution function. Since there can be only one crossing between 0 < t < ¢y, the
probability that no crossing occurs before time t is equal to F,.(4, ¢), for if r(t) < A,
then no crossing could have occurred before time t. Let F,{t) represent the probability
distribution function of the first crossing, that is, F(¢) is equal to the probability that a
crossing occurred before time t. From this definition and the preceding statements,

1 - F (t) = FA, 1), ost<t,. (23)
Differentiation of a distribution function gives a density function, Thus at all points where

& derivative is defined, we have the following probability density function for a threshold
crossing:
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We may ignore the possibility of a first crossing for ¢t > ¢, if
0
1- | fnde << 1. (25)
Y]
In deriving Eq. (24), we have not invoked the Markov property. Thus Eq, (24) is

valid for processes with short rise times and differentiable distribution functions. \Ve now
turn to examples of the applications of this equation.

APPLICATIONS

As a first example of the application of Eq. (24), consider additive Geussian noise.
Then F (A, t) - F,(A - s(t)), and it follows thal

f(8) = S, (A = 5(1)), 0<t<1,. (26)

Except for a multiplicative constant, Eq. (26) is identical to Eq. {17), which was derived in a
more rigorous manner.

Zero-mean additive Gaussian noise has a probability density specified by

1 [ 2
fn(x) = _\/’—Z_T—b'exp !"é“(;'é‘)- (27)

Suppos. that the leading edge of a recewved pulse can be approximated by
s(t) = My, 0st<ty, (28)

where M is a large constant. Then Egs. {26) through (28) yield

I(A M')2 P o
fo(t) = _\/.:__ exp L_._O_r—., 0< <ty {29)

We now assume that the threshold is at the half-amplitude level, that is, A = 8¢, /2. Under
this assumption, Eq. (25) gives the condition

A
2 erfe (~) << 1, (30)
g
where we define
e () = —= [ (zz)dt (31)
erfc (x) = exp {-—j dt. S
v 2 Jx 2
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Jquation {20) gives the condition under which we may ignore the region £ > ¢4.
We can essily calculate the expected value of {,, the randsm variable specifying the
pulse position. We have, if Eq. (28} is valid and A = Mt,/2,;
24/M
Elt,] =~ f tfo(t)yds. (32)
0

Using Fg. (29} in Eq. (32}, we ohiair
r ;
A JA
Eft.] ~ —{1 « 2erfe{—ij|. 3
ftel = 5 e“\a) (33)

Thus the sxrival-time estimation by adaptive threshoiding at the half-amplitude level is
biased. However, Eq. (30} indicates that the amount of bias is smell and that this bias de-
creases rapidly ss signal amplitude increasss.

A measure of the fluctuation in pulse position is provided by the standard deviation
of the aisval time, which is defined to be

s = VEI2L - {E[t,])?. (34)

When Eq. {85%) ic satisfied, we cau write

2A/M
]

Eft2] = £2f (1} di. (35)

i

From Eqgs. (29) and (33) throughi {35}, it foliows that for additive Gaussian naise,

7\ 2 .l g
0 Al . A) { AV
&t = (}‘3 Zeric{—]i11 - 2erfe *}J
\Of v
i
r 1
o\ 2 I- .\‘ !rz" \ 742\
(i PP L y‘-(i) exp (e} {36)
My g_ \e/ a\e \&c</ i :
Additive Gaussian noise appears ir the modsis for coherent axnpli*¢de-moduiation
(AM) systems. However, noncohersnt AM systems u2usliy contain envelope “atﬂc;cfﬁ. At
the output of the detector, r{t) is deszribed by a Rice d.smbfﬁon % azﬁ is 1 that the
probability distribution funiction is {8} -
[ 2 A st %8
,.(A 1y = 8xXp i~ “( } ‘ :.i‘fg{ ) ex ‘{—-;-\}dx, (37)
\ 262 “’b X\ O \ 2y
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M M22 AlG ( 2
fo(t) = — exp (~—~——)f ix exXp (—x—2->
L

2
(1] 20 0

-
X F’f Io(fﬂ> - le(ﬂ’f)ﬂ dx. (38)
g \G o J

where /7, (x) is the first-order Bessel function. The substivetion of Eq. (38) into Eqs. (32)
and (86) results in integrsls which cannot be evaluated analytically. However, with the
aid of a digital computer, it is possible to numerically compute the value of ¢,, the nor-
malized expected arrival tims, defined by

- Bt} M . )
t, = t1° = —zzu[tc]. _ (§9)

It is alsc possible to determine the function g(A/v), which is defined by

5 = —E{g(%) (40)

The resuits of the numerical computations are summarized in Table 1. The firsc column
is the signal-to-noise ratio (S/N) as defined in the usual AM system. Thus

2 2

24
S/N = 10logyg 5 = 10logyo —5- (41)

The fifth column is calcuiated from Eqgs. (36) and (40}, It is noticed that the standard
deviation for the Gaussian distribution (coherent AM system) is uniformly less than the
standard deviation for the Rice distribution ‘(noncohezent AM system). For a fixed value
of S/N, the degradation in standard deviation for the Rice distribution is defined to be

the additional power required to achieve the standard deviation that exists in the Gaussian
case for the specified S/N. The sixth column lists the degradatior in decibels as a function

- Table 1

T ) Signal-to-Ncize Dependency of Various Quantities
’ épnmmma{w l

8/N ‘ t, 3(»4 o} _ (amj

12 2.816 0.482 1.048 0.667 0.44
14 3.644 0.478 1.028 1.000 0.24
16 4.462 0.487 1.018 1.000 0.13
18 5.617 0.492 1.009 1.800 0.08
20 7.071 0.495 1.006 1.000 0,06
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of 8N, For §/N < 12 dB, it is founa 1t Bq. {25) is not well satisfied for ejther the
Rice or the Gauzsian dist nuutmr* hence, thez: values of S/N have not been i'«ted.

Examination of the tiird column in Table 1 shows that the estimation procedure is
hissed, Howaver, the bias stéadily decresses 83 S/N increases.

ASYMPTOTIC RESULTS

We conclude with s heuristic discussion of the asympiotic properties of arival-tine
estimation by adaptive thresholding. It ha» been seen in the last section that the esti-
mation procedure is biased, Of course, some of the apparent bias is due to our having
assumed a negligible probahility of a first thieshold crossing for { > ty. Some bias is also
due to sefting the threshold at the half-amplitude level. For hoth the Rice and Gaussian
distyibutions, the arrivsi-time estimate approaches the unbiased value of one-half the rise
time, in the imit of large 8/N. Thus we can say that the estimate is asymptotically un- -
biased,

For the unbiused estimate of arrival time of a low-pass pulse with large S;N in white
Gaussian noise, the Cramer-Rao bound requires (8} that

-~ 1 ‘ii b ! -1 ¢
82 &= i s j [3’(1;} < ("It} s '\42)
0 )

whore N is the noise power spectral density. if s'(*) = # is & constant and ¢; = 24/M,
Eq. (42) reduces to

N G2

2% —— x (43)

1‘1:1 1142 !

where we have assumed that the rise time is approximately equal to the inverse of the
system nolse bandwidih 5. Thus we have set

.‘.Y a NB = 02, (44)
tl - )

where 02 is the mean noise power. A comparison of the fifth column of Teble 1 and
Eg. (40) with Eq. {43) indicates that the adaptive-thresholding estimate approaches the
minimum variance expressed by the Cramer-Rac bound, Thus adaptive thresholding is
asympftotically efficient for white Gaussian noise if Eq. (44) is valid, Clearly the p=rfurm-
ance of a noncoherent syatem is bounded by the performance of tlie corresponding co-
herent system. Thus from a comparison of the fourth and fifth columns of Table 1, it
appears that adaptive threshoiding is slso asymptolically ed cient for tire Rician process.
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